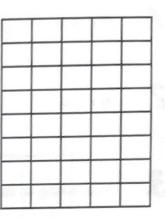
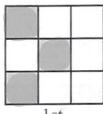
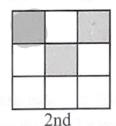

MINUTE JOURNAL

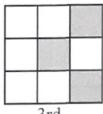
NAME _____

MinuTe#	Complete	MINUTE	Complete
50		63	-
51		64	
52		6 5	
53		66	
54		47	
55		68	
56		69	
57		70	
59		71	
59		72	
W		7 3	
41		74	
62		75	



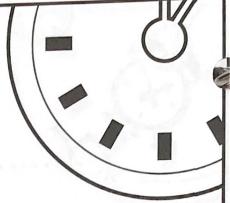



For Problems 1-3, use the grid to the right.


- Shade 15% of the squares.
- 2 What percent of the squares will NOT be shaded?
- 3. What is the perimeter of the grid?

4. Shade the squares in the 4th shape to complete the sequence.

3rd


- 5. The ages of the Eagle Cadet group members are 4, 6, 7, 7, and 11. What is the mode age?
- 6. What is the mean age of the Cadet group in Problem 5? _____
- What is the median age of the Cadet group in Problem 5?

8.
$$3+6^2 \div 12=$$

9. If
$$y = 3x - 6$$
 and $x = 7$, then $y = _____$.

10.
$$2^2(3+7-1) =$$

y = 2x - 3

7

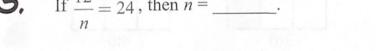
X

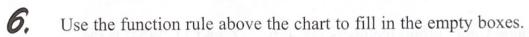
5

10

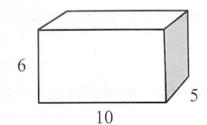
$$(-)(-) = +$$

$$(-)(+) = -$$

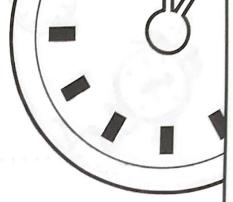

$$(-) \div (-) = +$$


$$(-) \div (+) = -$$

$$(-) + (-) = -$$


4.
$$(-5)^2 =$$

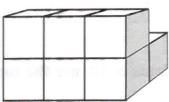
5. If
$$\frac{12}{n} = 24$$
, then $n =$ ____.



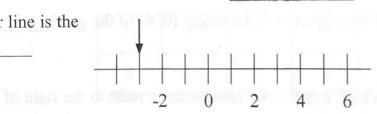
$$7. 3.426 \times 10^3 =$$

$$\frac{1}{9} = \frac{-45}{9} = \frac{1}{9}$$

3.
$$(-2 \cdot -4)^2 =$$


$$(-)(-)=+$$

$$(-)(+) = -$$


$$(-) \div (-) = +$$

X	y
2	13
5	28
3	18

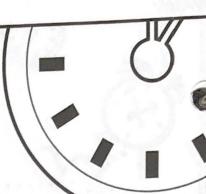
- Look at the chart and complete the function rule. y = 5x +_____
- 6. How many small blocks make up this shape? _____ (Hint: be sure to count the blocks you can't see)

What number on the number line is the arrow pointing toward?

For Problems 7–10, evaluate if x = -2, y = 3, and z = 10.

$$\mathbf{z}$$
 \mathbf{z}

$$2xy =$$


9.
$$\frac{y}{z} = _{---}\%$$

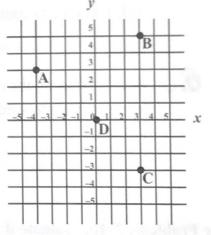
10.
$$\frac{z}{y+2}$$

1. If
$$8n = -40$$
, then $n =$ _____.

2. If
$$\frac{n}{4} = 12$$
, then $n =$ _____.

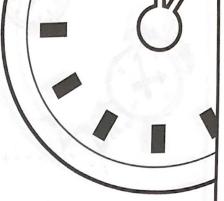
For Problems 3–5, use the chart to the right.

3.
$$y_2 - y_1 =$$


4.
$$x_2 - x_1 =$$

 $\begin{array}{c|ccccc} y_1 & y_2 & x_1 & x_2 \\ \hline 6 & 12 & 3 & 5 \end{array}$

$$5. \quad \frac{y_2 - y_1}{x_2 - x_1} =$$


For Problems 6-10, use the coordinate grid to the right.

- **6.** Which letter is at the origin (0, 0) of the grid? _____
- Which letter(s) are located three units to the right of the origin?

- **%.** Which letters are located above the origin?
- To go from point A to point B you would have to go _____.a. NEb. SEc. SWd. NW
- 10. Is there a letter located four units left of the origin and down two units? Circle: Yes or No

$$(-)(-) = +$$
 $(-)(+) = (-) \div (-) = +$
 $(-) \div (+) = (-) + (-) = -$

 y_1

 y_2

10

 $x_{_{I}}$

2

Rules of Integers

$$\frac{2}{6} = \frac{(-5) + (-13)}{6} =$$

3. If
$$-7m = -28$$
, then $m =$ _____

4. Look at the chart and complete the function rule.

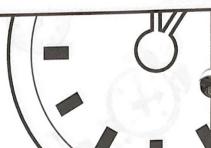
$$y = x^2 +$$

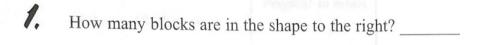
-			
5.	Using the chart in Problem	4, if $x = 10$, then $y =$	

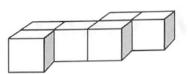
X	y
1	2
2	5
5	26

For Problems 6-8, use the chart to the right.

6.
$$y_2 - y_1 =$$


2.	$x_{2} - x_{1} =$	


$$\frac{\mathbf{y}_{2} - \mathbf{y}_{1}}{\mathbf{x}_{2} - \mathbf{x}_{1}} =$$


10. Put the numbers
$$\{-5, 0, 3^2, (-2)^2\}$$
 in descending (greatest to smallest) order.

2. Shade the squares in the 4th shape to complete the sequence.

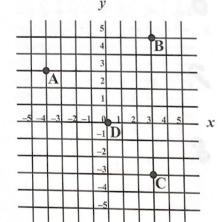
2nd

3rd

3. Shade the octagon.

c.

4. Shade the trapezoid.



For Problems 5-8, use the coordinate grid to the right.

5. Which letter is at the origin (0, 0) of the grid? _____

- 6. The coordinates of point B are (3, 5). What are the coordinates of point C?
- 8. To go from point C to point A, you have to go _____.

What are the coordinates of point A?

a. NE

b. SE

c. SW

d. NW

For Problems 9–10, use > , <, or = to complete.

9.


2.

(-8)(-5) _____ (9)(-8)

10.

 $\frac{(-6)^2}{4}$ _____ $\sqrt{(-4)(-25)}$

1. Use \bullet , +, -, or \div to complete: 5

2. If $\left[\frac{3}{13}\right] \left[\frac{a}{4}\right] = \frac{15}{52}$, then a =____.

3. If
$$36 = 2^x \cdot 3^x$$
, then $x =$ _____.

- 4. Write .01212... using bar notation. ____
- 5. If you multiply the number ____ times itself and add 1, you get 37.
- 6. Write $10\frac{3}{4}$ as an improper fraction.

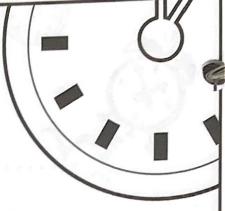
For Problems 7-10, circle True or False.

7. Railroad tracks are a good example of perpendicular lines.

True or False

 $(\text{negative}) \times (\text{negative}) \times (\text{negative}) = \text{positive}.$

True or False

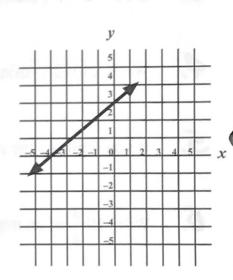

9. The fraction $\frac{2}{3}$ is closer to $\frac{1}{2}$ than it is to 1.

True or False

10. Trapezoids, squares, and rectangles all have four sides.

True or False

1.
$$2(-5+3\cdot 4)=$$


2. If
$$3n-2=10$$
, then $n=$ _____.

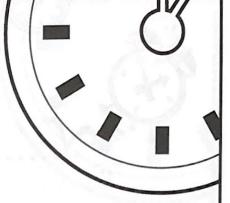
3. If
$$40 = 2^x \cdot 5$$
, then $x =$ _____.

For Problems 4-6, use the coordinate grid to the right.

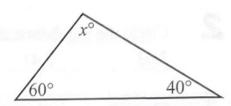
- 4. As you move from left to right, the line on the grid:

 Circle: goes up goes down is level
- 5. Where does the line cross the y-axis? _____
- 6. Where does the line cross the x-axis?

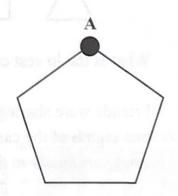
- 7. Find the next letter and number in the series: A3, D6, G9, _____
- Look at the chart and complete the function rule. y = x + 2
- **9.** Using the chart in Problem 8, if x = 10, then y =____.
- 10. Ali flips a coin two times. The possible results are shown to the right. List the four possible outcomes for two flips. Two have been done for you.


HH, HT, _____, _____.

$$H \xrightarrow{T} T$$

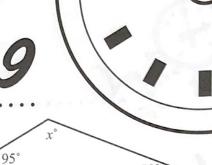

$$T \xrightarrow{H} T$$

 1^{st} toss 2^{nd} toss



- 1. Use + or to complete. (3 6) 12 = 9
- **2.** $(-3)^3 =$
- **3.** If all the angles of a triangle total 180°, then angle x in this triangle is _____.

- 4. Martin folds a sheet of paper in half, then in half again, and in half yet again. When he unfolds it, the paper is divided into _____ sections.
- 5. This letter H has _____.
 a. parallel lines b. perpendicular lines c. both
- 6. A is to A, as is to ____.
 - a. c. d.
- If point A, one of the vertices of a pentagon, is connected to each other vertex in the pentagon, _____ triangles will be formed.
 a. 2
 b. 3
 - c. 4 d. 5 d. 6 d. 7 sed out at a little ways a state.



For Problems 8–10, evaluate if a = 4, b = -5, and c = 2.

$$\mathbf{g}$$
, $\frac{ab}{c}$ =

10.
$$a + bc =$$

- If the angles of a four-sided shape total 360° , then angle x is
- 2. Circle the numbers that are greater than 2, but less than 2.4.
- **3.** The only even prime number is _____.

2.41

4. 16 weeks, 2 days is the same as _____.
a. 105 days b. 126 days c. 114 days d. 88 days _____.

1.99

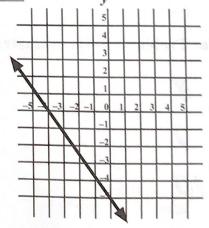
- **5.** Leah is dealing cards. She deals a king, then a queen, then a king. The next card to be dealt will be:
 - a. queen

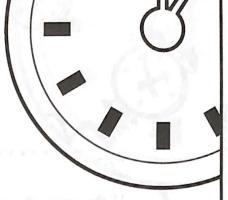
2.03

- **b.** king
- c. can't tell

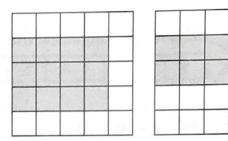
2.22

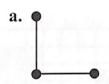
- d. ace
- 6. What is the pattern in this sequence?




- 2. What is the lowest composite number with the factors of 2, 3, and 4?
- 8. Friends were sharing a bag of candy. Mike ate one-fourth of the candy. Shelby ate one-eighth of the candy originally in the bag. Then Shelby's dog ate one-half of the candy originally in the bag. How much candy remains?

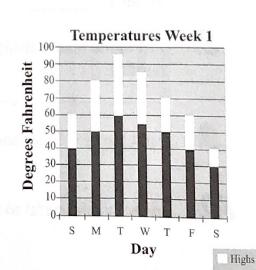
For Problems 9-10, use the graph to the right.


- **9.** Where does the line cross the y-axis (y-intercept)?
- 10. What is the x-intercept?

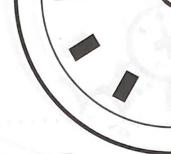


- 1. You would most likely measure the width of a swimming pool in:
 - a. cm
- b. m
- c. mm
- d. km
- Write the smallest possible number using the digits 4, 2, 8, 9, and 1.
- 3. Do the shaded shapes to the right have the same perimeter? Circle: Yes or No

- **4.** $(-8)^2 5 =$
- **5.** Which shape below shows an obtuse angle? _____

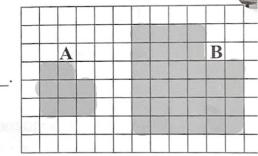


- **6.** Complete the sequence: 4.8, 5.4, 6.0, ______, ____.
- Circle three numbers below that have a sum of 7.
 6 3 5 0 8

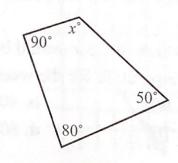

For Problems 8-10, use the graph to the right.

- **8.** Which day of the week was the warmest?
- **9.** Which day of the week had the narrowest gap between the high and low temperatures?
- Which of these would be closest to the mean high temperature for the week?
 - a. 90°
- **b.** 40°
- **c.** 70°
- **d.** 80°

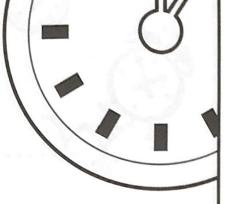
Lows


If the area of one side of this cube is 25cm², what is the area of the whole surface of the cube?

- **2.** Fill in the missing number: $3 \cdot \boxed{} = 1.8$
- 3. What is the sum of the first four composite numbers in the list below?

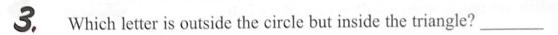

	1	2	3	4	5	6	7	8	9	10
Į	-	_								

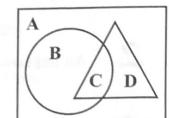
- **4.** -5 + -7 + 10 + 10 =
- **5.** If -3(4+a) = -15, then a =_____.
- 6. The length of each side of shape A has been doubled to create shape B. This means that the area of shape B is _____.



a. doubled

- b. three times bigger
- c. four times bigger
- d. six times bigger
- A number is between 20 and 30 and is three times the sum of its digits. What is the number?
- **8.** Fill in the blanks using the numbers 7, 6, 2, 9, and 8 to make the smallest possible number.
- **9.** Find the next letter and number in the series: A1, B4, C9, D16, _____
- 10. In the quadrilateral to the right, angle x equals _____.




Add the two shaded areas together. (Hint: Each set of shaded and unshaded boxes represents a fraction. Find the sum.)

100			
	 1		

For Problems 2-4, use the diagram to the right.

2 Which letter is inside the circle and the triangle?

- 4. Which letter is outside the circle and the triangle?
- 5. Look at the chart to the right and complete the function rule. y = -3x +

X	y
1	-1
2	-4
3	-7

- Using the chart in Problem 5, if x = 12, then $y = ____$. 6.
- 7. Tom has four dollars. Bob has three times as much as Tom. Cindy has twice as much as Bob. How much do they have altogether?

 $\frac{4+(-3)(-2)}{-2} =$

Circle the number that is different from the others.

12 15

10. Complete the bottom row of numbers on this chart.

			1				
		1	3	1	. de		
	1	3	5	3	1		
1	3	5	7	5	3	1	